当前位置: 学术ballbet体育 >> 学术报告 >> 浏览文章

Stability problems of dispersive geometric flows

发布时间: 2020年09月21日 浏览次数: 发布者: tymath2

Speaker: Dr. Ze Li


Title: Stability problems of dispersive geometric flows

Time: 15:00, 25 Sept., 2020

Location: 腾讯会议App(会议ID: 225716094)


In this talk, we introduce our recent works on global stability of harmonic maps under dispersive geometric flows, especially wave maps and Schrodinger map flows on hyperbolic planes.  The result is of two types, one is convergence in uniform distance, the other is resolution to harmonic maps and radiations in energy space. The proof is based on geometric linearization and several tools from operator theory and harmonic analysis. We focus on the main picture of the project and provide a sketched proof.

Speaker Introduction:

黎泽,博士毕业于中国科学技术大学,曾于中科院数学所任博士后,现在宁波大学数学与统计学院从事教研工作。主要研究方向为几何流和偏微分方程的全局动力学,文章发表在Adv. Math., DCDS, Calc. Var. PDE等著名期刊上。

联系人: 宋翀



ballbet体育-ballbet体育官网 yb体育|yb体育官网 德甲联赛下注_网址 亚伯体育_亚伯体育APP下载 yabo登录-yabo体育登录 yabo下载-yabovip官网下载 yb体育|yb体育官网